Science Fair Basics

Demonstrations vs. Experiments
The Scientific Method
Engineering Design Process
Grading/Judging

Abstracts

Workshops for CUSEF/SLVSEF 2011

Science Fair Projects

Experiments

Math projects

Engineering

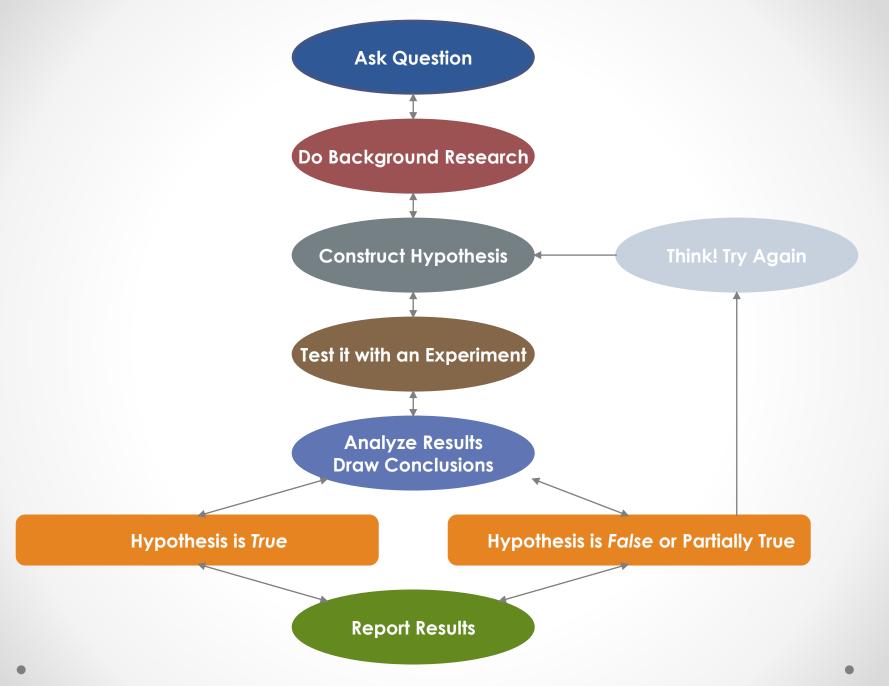
Computer Science

Demonstrations

What is a demonstration?

- A demonstration shows how something works.
- An experiment manipulates variables.
- To change a demonstration to an experiment, modify the project to include an independent and a dependent variable.
- Examples: Volcano, Motor.

It's About Process!


Science Fair Projects

Experiments

Math projects

Engineering

Computer Science

Computer Drogramm

Math Projects

Computer i rograf	ıııııııg
Engineering	

Scientific Method

Mathematical Reasoning/Proof

Process

procedure

Present results

Define what is known

Define a need

State your question

Do background research

Do background research

Research & define all terminology

Establish design criteria

Formulate your hypothesis, identify variables Design experiment, establish

Test your hypothesis by doing

Prepare preliminary designs

Make a conjecture/assumption based on what you know

Perform calculations

Look for counter examples

Build & test prototype

Test & redesign as necessary

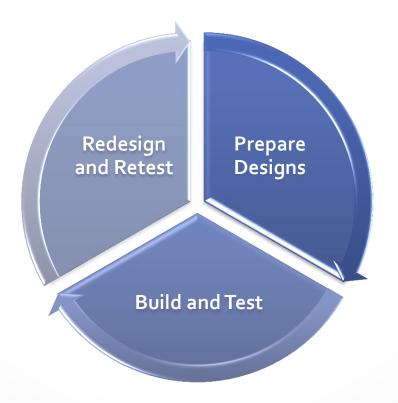
an experiment Analyze your results and draw conclusions

Recalculate and write up steps to the conclusion

Present Results

Scientific Method & Engineering Process Comparison used with permission from Science Buddies.

Present results


Computer Science Projects

- Computer science projects are (usually) a special type of engineering project.
- Scientific Method or Engineering Design Process?

Engineering Computer Science

Iteration!

 A process of repeating a sequence of steps, each time coming closer to your goal.

Step-by-Step

Define a need.

- Clearly define the problem you are going to solve or the situation you are going to improve.
- Express it as a goal.

2. Do background research.

Identify keywords

Generate questions

Define a target user

Evaluate alternate designs

Research design criteria

Iterate!

More Steps

3. Establish designs criteria.

- Requirements that will be used to make decisions about how you build/program the product.
- Remember your target user/customer.

4. Make preliminary designs.

- Write it down, sketch it out, etc.
- Consider and explore alternatives to your approach.

A Few More Steps

5. Build and test.

Use a "test plan" and analyze your data.

6. Redesign and retest.

- Modify, redesign, debug, etc. until you have achieve your design goal.
- A technical approach to your analysis is essential. Learn from your failures.

The Finish

7. Present your work.

- Outline the engineering design process that you used.
- Highlight the final product, its merit, originality, and usefulness.

Mistakes to avoid

- No need, no project.
- Gadgeteering is not engineering.
- Testing without asking the user.
- No analysis of prototype and redesign test results.

Grading and Judging

- "Technicians follow the recipe, but engineers create the recipe."
- Is this a copy? An adaptation? Something new?
- Does the student understand the underlying science?
- Is it practical?
- Does the student understand design tradeoffs? Safety factors? Economics?
- Success did it work? If it failed, does the student understand why? Can s/he offer improvements?

An Abstract about Abstracts

- An abstract is a concise (<250 word) summary of a project.
- Include purpose, problem, general procedures, summary of data/analysis and conclusions.
- Format/tone.
- Used for SRC, special awards, Grand Awards judging.

Summary

- Make a demonstration an experiment by adding variables.
- Science experiments, engineering projects, computer science projects, and math projects are all valid science fair projects.
- Use the right process.
- An abstract is a summary—and it's important.